| Authors | حامد پورفرزاد,مهدی شبانی نوش آبادی,محمدرضا گنجعلی,حمیده کاشانی |
| Journal | ELECTROCHIM ACTA |
| Page number | 83 |
| Volume number | 2019 |
| IF | 5.383 |
| Paper Type | Full Paper |
| Published At | 2019-05-29 |
| Journal Grade | Scientific - research |
| Journal Type | Electronic |
| Journal Country | Iran, Islamic Republic Of |
| Journal Index | SCOPUS ,JCR |
Abstract
Supercapacitors, as a fresh class of electrochemical energy storage devices are currently of widespread
interest in energy storage, which has become a research area due to outstanding performance features
such as high lifetime, high power density, high safety, and low maintenance costs. In this study, we
synthesize Co, Ni and Fe layered double hydroxides (NiCoFeeLDHs) on Nickelefoam as novel positive
electrode and Fe2O3/Graphene as novel negative electrode for supercapacitve energy storage application.
The electrochemical efficiencies of NiCoFeeLDHs have been explored and optimized by changing the
amounts of Ni, Co and Fe via electrochemical method. The NiCoFeeLDH sample with Ni:Co:Fe ratio of
2:1:1 has the maximum specific capacity, that is related to the synergistic effect of the presence of Co, Ni
and Fe which causes increased conductivity, increased oxidation rate of insulators such as Ni(OH)2, increases
the formation rate of CoIV active sites and facilitates the penetration of OHand therefore accelerates
the kinetic of process. NiCoFe-LDHs nanocomposite shows a significant and high specific
capacitance of 3130 Fg-1 at a density of current of 1 Ag-1. Furthermore, an asymmetric supercapacitor are
created using NiCoFe-LDHs as the positive and the Fe2O3/Graphene as the negative electrode exhibits the
maximum energy density of 101 Whkg1and the power density of 91.5 KWkg1, as well as a long-term
cycling stability (82.5% capacity retention after 5000 cycles).