نویسندگان | Maleki, M,, Baeza, D,سعید سلطانی محمدی,Madani, N,, Díaz, E,Anguita, F |
---|---|
نشریه | International Journal of Mining, Reclamation and Environment |
ضریب تاثیر (IF) | ثبت نشده |
نوع مقاله | Full Paper |
تاریخ انتشار | 2024-06-20 |
رتبه نشریه | علمی - پژوهشی |
نوع نشریه | الکترونیکی |
کشور محل چاپ | ایران |
نمایه نشریه | SCOPUS ,JCR |
چکیده مقاله
In this study, we compared outcomes of optimising the placement of five additional drill holes using three geostatistical cost functions (AKV, WAKV, and CV) and the Particle Swarm Optimisation algorithm (PSO). WAKV identified locations with higher average copper grades compared to AKV. Conversely, CV suggested sites with high kriging variance and copper grade variation. Initial holes, alongside those determined by each cost function, were used to classify mineral resources. Findings underscored the effectiveness of optimising drill hole placement based on cost functions in reducing uncertainty and improving mineral resource classification.
tags: Mineral resource classification; kriging variance; combined variance; Particle swarm optimisation