رزومه
QR


سعید سلطانی محمدی

سعید سلطانی محمدی

دانشیار

دانشکده: دانشکده مهـندسـی

گروه: مهندسی معدن

مقطع تحصیلی: دکترای تخصصی

سال تولد: ۱۳۶۰

رزومه
QR
سعید سلطانی محمدی

دانشیار سعید سلطانی محمدی

دانشکده: دانشکده مهـندسـی - گروه: مهندسی معدن مقطع تحصیلی: دکترای تخصصی | سال تولد: ۱۳۶۰ |

دانشجویان عزیز با توجه به تمرکز جلسات در برخی از ساعات اعلام شده به عنوان امور اجرایی، پیش از مراجعه خضوری از طریق تماس صوتی یا پیامی هماهنگ فرمایید. 

نمایش بیشتر

Proposing Drilling Locations Based on the 3D Modeling Results of Fluid inclusion Data Using the Support Vector Regression Method

نویسندگانملیحه عباس زاده-اردشیر هزارخانی-سعید سلطانی محمدی
نشریهJ GEOCHEM EXPLOR
تاریخ انتشار2016-7-01
نمایه نشریهISI ,SCOPUS

چکیده مقاله

In recent years, effort has been made to make the results of fluid inclusion studies applicable and use them in the design of the exploration process. It has been tried in this paper to propose a mineralization predictive model for chalcopyrite deposition based on favorable thermodynamic conditions using the 3D modeling results of the fluid inclusion data. To study the applicability and efficiency of the proposed method, Sungun porphyry copper deposit, East Azarbaijan province, Iran, was studied as a case and the 3D model of the fluid inclusion data was prepared using the support vector regression method. The model precisions for the estimation of the fluid inclusion data including homogenization temperature, eutectic temperature and salinity were respectively 76, 71, and 93%. The predictive model was prepared based on the chalcopyrite deposition’s favorablethermodynamic conditions (a homogenization temperature range of 300-400oC and moderate-to-high salinity). A comparison of the predictive model with that of the copper grade shows the efficiency of the proposed modeling and high conformity of the two models. The drilling pattern was then investigated based on the predictive model and showed that there would be an almost 6% cost reduction (i.e. elimination of 9 drillholes) if use was made of the proposed predictive model in the design of exploration drillholes.