Recent Progress in the Use of Perovskites for Electrochemical, Photoelectrochemical, and Photovoltaic–Electrochemical CO 2 Reduction

نویسندگانمینا احمدی کاشانی,محمود زنده دل,luigi schirone,محمد مهدی ابوالحسنی,نرگس یعقوبی نیا
نشریهEnergies
شماره صفحات7632
شماره مجلد16
ضریب تاثیر (IF)ثبت نشده
نوع مقالهFull Paper
تاریخ انتشار2023-11-17
رتبه نشریهعلمی - پژوهشی
نوع نشریهالکترونیکی
کشور محل چاپایران
نمایه نشریهSCOPUS ,JCR

چکیده مقاله

Developing novel functional materials to advance the technological level of clean and renewable energy systems is the focus of much research. Due to their outstanding operational and compositional properties, perovskite-based structures have already been studied as an important class of solid-state components for electrochemical (EC), photoelectrochemical (PEC), and photovoltaic–electrochemical (PV-EC) CO2 reduction, showing great potential in their catalytic activity and device stability and with a promising window for further technological developments. In this review, the different kinds of perovskites in the context of their structural features, which lead to their different applications, are first investigated. Then, we summarize the recent progress in the use of perovskites in EC, PEC, and PV-EC CO2-reduction devices. The research demonstrates that the mechanism and kinetics of intermediate formation have a significant effect on the creation of the final product. Investigations show that appropriate surface modifications, such as through the use of doping agents, alloy construction, and composites, can considerably improve the electrocatalytic activity and stability of perovskites. Finally, the perspectives on, and limitations of, the commercial and large-scale production of perovskites for CO2 reduction are stated. harvesting and environmental sensing. Energy harvesting is one of the most recent research techniques for producing stable electrical energy from mechanical sources. Polyvinylidene fluoride– trifluoroethylene (PVDF-TrFE) is applicable for sensors and self-powered devices such as medical implants and wearable electronic devices. The preparation of electrospun P(VDF-TrFE) nanofibers is of great interest for the fabrication of sensors and self-powered devices, nanogenerators, and sensors. In this regard, it is necessary to investigate the effects of various parameters on the morphology and piezoelectric output voltage of such nanofibers. In this study, we have examined the effect of concentration and feed rate on the nanofiber diameter. It has been found that by increasing the concentration and feed rate of the polymer solution, the diameter of the nanofibers increases. The experimental results and the finite element method (FEM) simulation have also shown consistency; when the nanofiber diameter increases, the output voltage of the nanofibers decreases. This behavior can be related to the strain reduction in the deformed nanofibers.

tags: perovskite; electrochemical; photoelectrochemical; photovoltaic–electrochemical; CO2 reduction