Time-dependent creep stress redistribution analysis of thick-walled functionally graded spheres

نویسندگانعباس لقمان-علی قربانپور-آل ایوب
نشریهMECH TIME-DEPEND MAT
تاریخ انتشار۲۰۱۱-۵-۰۱
نوع نشریهالکترونیکی
نمایه نشریهISI ,SCOPUS

چکیده مقاله

Time-dependent creep stress redistribution analysis of thick-walled spheres made of functionally graded material (FGM) subjected to an internal pressure and a uniform temperature field is performed using the method of successive elastic solution. The material creep and mechanical properties through the radial graded direction are assumed to obey a simple power-law variation. Total strains are assumed to be the sum of elastic, thermal and creep strains. Creep strains are time, temperature and stress dependent. Using the equations of equilibrium, compatibility and stress–strain relations a differential equation, containing creep strains, for radial stress are obtained. Ignoring creep strains, a closed-form solution for initial thermoelastic stresses at zero time is presented. It has been found that the material in-homogeneity parameterβ has a substantial effect on thermoelastic stresses. From thermoelastic analysis the material identified by β = 2 in which a more uniform shear stress distribution occurs throughout the thickness of the FGM sphere is selected for time-dependent stress redistribution analysis. Using the Prandtl–Reuss relations and Norton’s creep constitutive model, history of stresses and strains are obtained. It has been found that radial stress redistributions are not significant, however, major redistributions occur for circumferential and effective stresses. It has also been concluded that stresses and strains are changing with time at a decreasing rate so that there is a saturation condition beyond which not much change occurs. Indeed after 50 years the solution approaches the steady-state condition.