رزومه
QR


محمد الماسی کاشی

محمد الماسی کاشی

استاد

دانشکده: دانشکده فیزیک

گروه: فیزیک ماده ی چگال

مقطع تحصیلی: دکترای تخصصی

رزومه
QR
محمد الماسی کاشی

استاد محمد الماسی کاشی

دانشکده: دانشکده فیزیک - گروه: فیزیک ماده ی چگال مقطع تحصیلی: دکترای تخصصی |

Magnetic characteristics and hyperthermia properties of copper-cobalt ferrite (CuxCo1−xFe2O4) nanoparticles

نویسندگانسیده طاهره مرتضوی باباحیدری,محمد الماسی کاشی,Amir H. Montazer,Kamran Heydaryan,محسن محمدعلی زاده
نشریهApplied Physics A
شماره صفحات1
شماره مجلد131
ضریب تاثیر (IF)ثبت نشده
نوع مقالهFull Paper
تاریخ انتشار2025-08-20
رتبه نشریهعلمی - پژوهشی
نوع نشریهالکترونیکی
کشور محل چاپایران
نمایه نشریهJCR ,SCOPUS

چکیده مقاله

The specific properties of magnetic ferrites have made them a point of interest in magnetic field hyperthermia studies. However, magnetic characteristics and hyperthermia properties of copper-cobalt ferrite nanoparticles (NPs) with different compositions have received little attention. Here, CuxCo1−xFe2O4 (0 ≤ x ≤ 1) NPs are synthesized via a simple chemical co-precipitation method at a temperature of 80 °C. The Cu substitution causes the crystallite size and average size of the NPs to show decreasing trends, affecting the corresponding magnetic parameters such as saturation magnetization (Ms) and coercivity (Hc), as well as hyperthermia properties. By increasing x from 0 to 1, hysteresis loop results show that Ms and Hc decrease from 65.3 to 11.7 emu/g and 95.8 to 1.4 Oe, respectively, arising from the complete replacement of Co2+ ions by Cu2+ ones. First-order reversal curve (FORC) analysis is employed to investigate magnetic characteristics of the NPs, revealing enhancements in the superparamagnetic fraction up to 83% with increasing the Cu content. Hyperthermia measurements (H = 400 Oe and f = 400 kHz) of pure Co and Cu substituted Co ferrite NP ferrofluids prepared in a water medium show a continuous reduction in specific loss power (SLP) when increasing x. In this case, SLP of Cu0.2Co0.8Fe2O4 NPs with a wide FORC coercive field distribution is found to increase from 67.6 to 108.6 W/g with decreasing the ferrofluid concentration from 7 to 5 mg/ml, indicating the effective role of Neel and Brownian relaxations in the heating efficiency.