رزومه وب سایت شخصی
QR


سیدمرتضی بابامیر

سیدمرتضی بابامیر

استاد

دانشکده: دانشکده مهندسی برق و کامپیوتر

گروه: مهندسی نرم افزار

مقطع تحصیلی: دکترای تخصصی

رزومه وب سایت شخصی
QR
سیدمرتضی بابامیر

استاد سیدمرتضی بابامیر

دانشکده: دانشکده مهندسی برق و کامپیوتر - گروه: مهندسی نرم افزار مقطع تحصیلی: دکترای تخصصی |

Please see the following link
http://se.kashanu.ac.ir/babamir

My affiliation

مرتبه علمی: استاد

دکتری تخصصی مهندسی نرم افزار: دانشگاه تربیت مدرس

کارشناسی ارشد مهندسی نرم افزار: دانشگاه تربیت مدرس

کارشناسی مهندسی نرم افزار: دانشگاه فردوسی مشهد

مدیر گروه مهندسی کامپیوتر: از بهمن 99 تا کنون

نمایش بیشتر

Fast language-independent correction of interconnected typos to finding longest terms

نویسندگانBehzad Soleimani Neysiani
همایش24th International Conference of Information Technology (IVUS 2019)
تاریخ برگزاری همایش2019-04-25 - 2019-04-27
محل برگزاری همایش122 - Kaunas
ارائه به نام دانشگاهدانشگاه لیتوانی
نوع ارائهسخنرانی
سطح همایشبین المللی

چکیده مقاله

Triagers deal with bug reports in software triage systems like Bugzilla to prioritizing, finding duplicates, and assigning those to developers, which these processes should be automated, especially for huge open source projects. These bug reports must be mined by text mining, information retrieval, and natural language processing techniques for automation processes. There are many typos in user bug reports which cause low accuracy for artificial intelligence techniques. These typos can be detected based on standard dictionaries, but correction of these typos needs human knowledge based on the context of bug reports. It is important which neither Google Translator nor Microsoft Office Word can detect interconnected terms –a common type of typos in bug reports- having more than two meaningful terms. This research provides a novel language-independent approach for fast correction of interconnected typos based on natural language processing and human neural network structure to detect and correct interconnected typos. A new tree-based method proposed for term matching and two algorithms proposed for fast longest term finding in an interconnected typo. A dataset is used including 180-kilo typos based on four famous bug report dataset of Android, Eclipse, Mozilla Firefox, and Open Office projects. Then proposed method evaluated on typos versus the state of the art. The results show the runtime performance of the proposed method is as same as the related works but the average words length is improved and at least more than 57% of typos in the dataset can be classified as interconnected typos.