Multi-resolution gray-level image enhancement using particle swarm optimization

Authorsعلی محمد نیک فرجام,حسین ابراهیم پور کومله
JournalApplied Intelligence
Page number1132
Volume number47
IFثبت نشده
Paper TypeFull Paper
Published At2017-05-15
Journal GradeScientific - research
Journal TypeElectronic
Journal CountryIran, Islamic Republic Of
Journal IndexSCOPUS ,ISI-Listed

Abstract

This paper presents a multi-resolution method for gray-level image enhancement using Particle Swarm Optimization (PSO). The enhancement optimization procedure is a non-linear problem with various constraints. The proposed image enhancement algorithm (MGE-PSO) generates a whole pyramid of differently sized image in order to utilize more information for improvement process. In fact, MGE-PSO employs the ability of image pyramid to determine informative parts of an image for visual perception. When an image is downscaled, area of homogeneous regions is decreased and informative pixels of input image can be selected easier. The PSO uses averaged variance value of all pixels included in the informative and noninformative classes of each level in image pyramid to move through search space for finding the best intensity values of pixels to transfer maximum visual perception. Experimental results on Berkeley dataset demonstrate the superiority of the proposed MGE-PSO to other methods. Beside, detailed analysis of selection criterion used in PSO are available.

tags: Image improvement · Multi-resolution image enhancement · Gray-level images · Image pyramid · Particle swarm optimization