نویسندگان | علی محمد نیک فرجام,حسین ابراهیم پور کومله |
---|---|
نشریه | Applied Intelligence |
شماره صفحات | 1132 |
شماره مجلد | 47 |
ضریب تاثیر (IF) | ثبت نشده |
نوع مقاله | Full Paper |
تاریخ انتشار | 2017-05-15 |
رتبه نشریه | علمی - پژوهشی |
نوع نشریه | الکترونیکی |
کشور محل چاپ | ایران |
نمایه نشریه | SCOPUS ,ISI-Listed |
چکیده مقاله
This paper presents a multi-resolution method for gray-level image enhancement using Particle Swarm Optimization (PSO). The enhancement optimization procedure is a non-linear problem with various constraints. The proposed image enhancement algorithm (MGE-PSO) generates a whole pyramid of differently sized image in order to utilize more information for improvement process. In fact, MGE-PSO employs the ability of image pyramid to determine informative parts of an image for visual perception. When an image is downscaled, area of homogeneous regions is decreased and informative pixels of input image can be selected easier. The PSO uses averaged variance value of all pixels included in the informative and noninformative classes of each level in image pyramid to move through search space for finding the best intensity values of pixels to transfer maximum visual perception. Experimental results on Berkeley dataset demonstrate the superiority of the proposed MGE-PSO to other methods. Beside, detailed analysis of selection criterion used in PSO are available.
tags: Image improvement · Multi-resolution image enhancement · Gray-level images · Image pyramid · Particle swarm optimization