نویسندگان | زهرا رضائی,حسین ابراهیم پور کومله,بهناز اسلامی,رامیار چاوشی نژاد,مهدی توتونچی |
---|---|
نشریه | Cell Journal (Yakhteh) |
شماره صفحات | 319 |
شماره مجلد | 22 |
ضریب تاثیر (IF) | 1.983 |
نوع مقاله | Full Paper |
تاریخ انتشار | 2019-12-15 |
رتبه نشریه | علمی - پژوهشی |
نوع نشریه | الکترونیکی |
کشور محل چاپ | ایران |
نمایه نشریه | SCOPUS ,IranMedex ,PubMed ,JCR |
چکیده مقاله
Objective: Health-related studies have been recently at the heart attention of the media. Social media, such as Twitter, has become a valuable online tool to describe the early detection of various adverse drug reactions (ADRs). Different medications have adverse effects on various cells and tissues, sometimes more than one cell population would be adversely affected. These types of side effect are occasionally associated with the direct or indirect influence of prescribed drugs but do not have general unfavorable mutagenic consequences on patients. This study aimed to demonstrate a quick and accurate method to collect and classify information based on the distribution of approved data on Twitter. Materials and Methods: In this classification method, we selected "ask a patient" dataset and combination of Twitter "Ask a Patient" datasets that comprised of 6,623, 26,934, and 11,623 reviews. We used deep learning methods with the word2vec to classify ADR comments posted by the users and present an architecture by HAN, FastText, and CNN. Results: Natural language processing (NLP) deep learning is able to address more advanced peculiarity in learning information compared to other types of machine learning. Moreover, the current study highlighted the advantage of incorporating various semantic features, including topics and concepts. Conclusion: Our approach predicts drug safety with the accuracy of 93% (the combination of Twitter and "Ask a Patient" datasets) in a binary manner. Despite the apparent benefit of various conventional classifiers, deep learningbased text classification methods seem to be precise and influential tools to detect ADR.
tags: Adverse Drug Reaction, Classification, Deep Learning, Natural Language Processing, Social Network