Authors | احمدرضا قاسمی,کمیل حسین پور |
---|---|
Journal | Mechanics of Advanced Composite Structures |
Page number | 141 |
Volume number | 5 |
Paper Type | Full Paper |
Published At | 2018-12-31 |
Journal Grade | Scientific - research |
Journal Type | Electronic |
Journal Country | Iran, Islamic Republic Of |
Journal Index | SCOPUS ,ISC |
Abstract
This study investigates the time-dependent long-term creep strain in a composite cylinder made of glass/vinylester with a unidirectional ply. The cylinder is subjected to an internal pressure and the boundary condition is free–free and acts as thermal insulation. The classical lamination theory (CLT) is used to derive the governing equations as a second-order equation to determine the radial, circum-ferential, axial, and effective stresses in the cylinder wall. The distribution of the radial and circumferential creep strains is based on the Schapery’s single integral model for nonlinear viscoelastic materials. This study focuses on the effect of the orientation of the fibers on the creep strain distribution in the wall of a cylinder. The results show that the creep strain is lower when
tags: Long-term creep strain Schapery single integral Nonlinear viscoelastic Polymer matrix composites