| نویسندگان | علی عطابیگی-حمیدرضا ظهوری زنگنه-رسول کاظمی نجف آبادی |
| نشریه | NONLINEAR ANAL-THEOR |
| تاریخ انتشار | 2012-3-01 |
| نمایه نشریه | ISI ,SCOPUS |
چکیده مقاله
This paper deals with the analytical property of the first Melnikov function for general
Hamiltonian systems possessing a cuspidal loop of order 2 and its expansion at the
Hamiltonian value corresponding to the loop. The explicit formulas for the first coefficients
of the expansion have been given. We prove that at least 13 limit cycles can bifurcate from
the cuspidal loop of order 2 under certain conditions. Then we consider the cyclicity of a
cuspidal loop in some Liénard and Hamiltonian systems, and determine the number of limit
cycles that can bifurcate from the perturbed system.