نویسندگان | علی زاغیان-رسول کاظمی نجف آبادی-حمیدرضا ظهوری زنگنه |
---|---|
نشریه | U POLITEH BUCH SER A |
تاریخ انتشار | ۲۰۱۶-۹-۰۱ |
نمایه نشریه | ISI ,SCOPUS |
چکیده مقاله
In this paper the asymptotic expansion of first-order Melnikov function of a heteroclinic loop connecting a cusp and a nilpotent saddle both of order one for a planar near-Hamiltonian system are given. Next, we consider the bifurcation of limit cycles of a class of hyper-elliptic Lienard system with this kind of heteroclinic loop. It is shown that this system can undergo Poincare bifurcation from which at most three limit cycles for small positive e can emerge in the plane. Also using this asymptotic expansion it was shown that there exist parameter values for which three limit cycles exist close to this loop.