| نویسندگان | علی زاغیان-رسول کاظمی نجف آبادی-حمیدرضا ظهوری زنگنه |
| نشریه | U POLITEH BUCH SER A |
| تاریخ انتشار | 2016-9-01 |
| نمایه نشریه | ISI ,SCOPUS |
چکیده مقاله
In this paper the asymptotic expansion of first-order Melnikov function of
a heteroclinic loop connecting a cusp and a nilpotent saddle both of order one for
a planar near-Hamiltonian system are given. Next, we consider the bifurcation of
limit cycles of a class of hyper-elliptic Lienard system with this kind of heteroclinic
loop. It is shown that this system can undergo Poincare bifurcation from which at
most three limit cycles for small positive e can emerge in the plane. Also using
this asymptotic expansion it was shown that there exist parameter values for which
three limit cycles exist close to this loop.