نویسندگان | رسول عاشقی,رسول کاظمی نجف آبادی,غدیر محمد |
---|---|
نشریه | Int. J. Nonlinear Anal. Appl. |
ضریب تاثیر (IF) | ثبت نشده |
نوع مقاله | Full Paper |
تاریخ انتشار | 1970-01-01 |
رتبه نشریه | علمی - پژوهشی |
نوع نشریه | الکترونیکی |
کشور محل چاپ | ایران |
نمایه نشریه | ISC |
چکیده مقاله
In this paper, we present a new criterion function for investigating the monotonicity of the ratio of two Abelian integrals in piecewise-smooth differential systems, and then, apply it to deal with some examples. More precisely, we consider the Abelian integrals of the form Ik(h) = IΓh fk(x)ydx, k = 0, 1, with Γh = ΓL h + ΓR h , where ΓL h = {(x, y) ∈ R2 | 1 2 y2 + Ψ2(x) = h, x < 0} and ΓR h = {(x, y) ∈ R2 | 12 y2 + Ψ1(x) = h, x > 0}. We prove that the monotonicity of the presented criterion function implies the monotonicity of the ratio I1(h) I0(h) and provide a few examples to explain the application of this criterion.
tags: Piecewise-smooth differential systems, Melnikov function, Monotonicity, Abelian integral, Limit cycle