| نویسندگان | علی بخشعلیزاده-حمیدرضا ظهوری زنگنه-رسول کاظمی نجف آبادی |
| نشریه | INT J BIFURCAT CHAOS |
| تاریخ انتشار | 2016-11-01 |
| نمایه نشریه | ISI ,SCOPUS |
چکیده مقاله
In this paper the asymptotic expansion of first-order Melnikov function of a heteroclinic loop
connecting a cusp of order two and a hyperbolic saddle for a planar near-Hamiltonian system
is given. Next, we consider the limit cycle bifurcations of a hyper-elliptic Lienard system with
this kind of heteroclinic loop and study the least upper bound of limit cycles bifurcated from
the period annulus inside the heteroclinic loop, from the heteroclinic loop itself and the center.
Wend that at most three limit cycles can be bifurcated from the period annulus, also we give
different distribution of bifurcated limit cycles.