Unveiling the synthesis of CuCe2(MoO4)4 nanostructures and its physico-chemical properties on electrochemical hydrogen storage

Authorsمریم سادات مرصعی-علی صالح آبادی-امید امیری-مسعود صلواتی-احمد اکبری
JournalJournal of Alloys and Compounds
Paper TypeFull Paper
Published At2020-01-30
Journal GradeScientific - research
Journal TypeElectronic
Journal CountryNetherlands
Journal IndexSCOPUS ,JCR

Abstract

The secondary energy sources, like hydrogen, is a key enabling energy carrier for the advancement of fuel cell technology. Hydrogen has a low volumetric energy density; therefore, its transportation is costly, and requires a large area. Solid-state hydrogen storage is a key solution for the promoting hydrogen in stationary power, portable power, and transportation applications. To keep these challenges up, this paper integrates production design of a novel solid-state-nanosized-mixed metal oxides (MMOs), CuCe2(-MoO4)4 nanostructures via Pechini method, structural and morphological assessments, and its respective hydrogen storage properties. The electrochemical properties of the samples with morphological diversity have unveiled an exceeded discharge capacity (~1320 mA h/g) of the sample which designed in neutral medium (pH ¼ 7), having a specific surface area of 7.90 m2 g1 and mean pore size of 37.07 nm.