رزومه
QR


مهسا سهیل شمائی

مهسا سهیل شمائی

استادیار

دانشکده: دانشکده علوم ریاضی

گروه: علوم کامپیوتر

مقطع تحصیلی: دکترای تخصصی

رزومه
QR
مهسا سهیل شمائی

استادیار مهسا سهیل شمائی

دانشکده: دانشکده علوم ریاضی - گروه: علوم کامپیوتر مقطع تحصیلی: دکترای تخصصی |

Comparative Study of an Ensemble Machine Learning Model Versus Maximum Likelihood Model to Assess Reliability Measures in Right Censored Data Analysis

نویسندگانفرانک گودرزی,مهسا سهیل شمائی
نشریهMathematics Interdisciplinary Research
شماره صفحات267
شماره مجلد10
نوع مقالهFull Paper
تاریخ انتشار2025-09-01
رتبه نشریهعلمی - پژوهشی
نوع نشریهالکترونیکی
کشور محل چاپایران
نمایه نشریهISC

چکیده مقاله

This paper explores the estimation of a new power function under Type-II right censoring using two methods: maximum likelihood estimation (MLE) and an ensemble machine learning model based on stacking. The study aims to assess both methods’ effectiveness in estimating various reliability measures, such as hazard rate, mean residual life, variance residual life, mean inactivity time, and variance inactivity time. The stacking model integrates five base models, radial basis function neural network, random forest, Support Vector Regression (SVR), Multilayer Perceptron (MLP), and gradient boosting regression trees, with an radial basis function neural network serving as a meta-learner for final predictions. Numerical experiments compare the performance of the stacking model against MLE for Type-II censored data. Results indicate that the stacking model significantly enhances the accuracy of reliability measure predictions, showcasing its potential as a robust tool for reliability analysis in the context of Type-II censoring