رزومه
QR


مهسا سهیل شمائی

مهسا سهیل شمائی

استادیار

دانشکده: دانشکده علوم ریاضی

گروه: علوم کامپیوتر

مقطع تحصیلی: دکترای تخصصی

رزومه
QR
مهسا سهیل شمائی

استادیار مهسا سهیل شمائی

دانشکده: دانشکده علوم ریاضی - گروه: علوم کامپیوتر مقطع تحصیلی: دکترای تخصصی |

A Second Examination of Trigonometric Step Sizes and Their Impact on Warm Restart SGD for Non-Smooth and Non-Convex Functions

نویسندگانمهسا سهیل شمائی,سجاد فتحی هفشجانی
نشریهMathematics
شماره صفحات829
شماره مجلد13
ضریب تاثیر (IF)2.3
نوع مقالهFull Paper
تاریخ انتشار2025-03-01
رتبه نشریهعلمی - پژوهشی
نوع نشریهالکترونیکی
کشور محل چاپایران
نمایه نشریهJCR ,SCOPUS

چکیده مقاله

This paper presents a second examination of trigonometric step sizes and their impact on Warm Restart Stochastic Gradient Descent (SGD), an essential optimization technique in deep learning. Building on prior work with cosine-based step sizes, this study introduces three novel trigonometric step sizes aimed at enhancing warm restart methods. These step sizes are formulated to address the challenges posed by non-smooth and non-convex objective functions, ensuring that the algorithm can converge effectively toward the global minimum. Through rigorous theoretical analysis, we demonstrate that the proposed approach achieves an ????(1????−−√) convergence rate for smooth non-convex functions and extend the analysis to non-smooth and non-convex scenarios. Experimental evaluations on FashionMNIST, CIFAR10, and CIFAR100 datasets reveal significant improvements in test accuracy, including a notable 2.14% increase on CIFAR100 compared to existing warm restart strategies. These results underscore the effectiveness of trigonometric step sizes in enhancing optimization performance for deep learning models.