| نویسندگان | مهسا سهیل شمائی,سجاد فتحی هفشجانی |
| نشریه | Mathematics Interdisciplinary Research (MIR) |
| شماره صفحات | 237 |
| شماره مجلد | 9 |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2024-09-01 |
| رتبه نشریه | علمی - پژوهشی |
| نوع نشریه | الکترونیکی |
| کشور محل چاپ | ایران |
| نمایه نشریه | ISC |
چکیده مقاله
This paper introduces a novel approach to enhance the performance of
the stochastic gradient descent (SGD) algorithm by incorporating a modified
decay step size based on p1
t . The proposed step size integrates a logarithmic
term, leading to the selection of smaller values in the final iterations.
Our analysis establishes a convergence rate of O( lpn T
T
) for smooth non-convex
functions without the Polyak-Łojasiewicz condition. To evaluate the effectiveness
of our approach, we conducted numerical experiments on image
classification tasks using the Fashion-MNIST and CIFAR10 datasets, and
the results demonstrate significant improvements in accuracy, with enhancements
of 0:5% and 1:4% observed, respectively, compared to the traditional
p1
t step size. The source code can be found at
https://github.com/Shamaeem/LNSQRTStepSize.