| نویسندگان | مهسا سهیل شمائی,سجاد فتحی هفشجانی,زینب سعیدیان طریی |
| نشریه | Frontiers of computer scinece |
| ضریب تاثیر (IF) | 4.2 |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2024-03-14 |
| رتبه نشریه | علمی - پژوهشی |
| نوع نشریه | الکترونیکی |
| کشور محل چاپ | ایران |
| نمایه نشریه | JCR ,SCOPUS |
چکیده مقاله
In this paper, we propose a novel warm restart
technique using a new logarithmic step size for the stochastic
gradient descent (SGD) approach. For smooth and non-convex
functions, we establish an convergence rate for the
SGD. We conduct a comprehensive implementation to
demonstrate the efficiency of the newly proposed step size on
the FashionMinst, CIFAR10, and CIFAR100 datasets.
Moreover, we compare our results with nine other existing
approaches and demonstrate that the new logarithmic step size
improves test accuracy by 0.9% for the CIFAR100 dataset
when we utilize a convolutional neural network (CNN) model.