رزومه
QR


سید مهدی وحیدی پور

سید مهدی وحیدی پور

استادیار

عضو هیئت علمی تمام وقت

دانشکده: دانشکده مهندسی برق و کامپیوتر

گروه: هوش مصنوعی

مقطع تحصیلی: دکترای تخصصی

سال تولد: ۱۳۵۶

رزومه
QR
سید مهدی وحیدی پور

استادیار سید مهدی وحیدی پور

عضو هیئت علمی تمام وقت
دانشکده: دانشکده مهندسی برق و کامپیوتر - گروه: هوش مصنوعی مقطع تحصیلی: دکترای تخصصی | سال تولد: ۱۳۵۶ |

رایانشانی و شناسه اسکایپ:  vahidipour[ATSIGN]kashanu[DOT]ac[DOT]ir

شناسه تلگرام و واتساپ: [ATSIGN]Mvahidipour

لینکهای مرتبط با من

Google Scholar | ORCID | Scopus | ResearchGate | Publon | Dijsktra number (CSAuthor) | Mendely | DBLP 

نمایش بیشتر

چارچوب پیش بینی پیوند با استفاده از شبکه عصبی گرافی مبتنی بر زیرگراف

نویسندگانریحانه کرمی,مهدی وحیدی پور
نشریهJournal of soft computing
ضریب تاثیر (IF)ثبت نشده
نوع مقالهFull Paper
تاریخ انتشار1402/11/06
رتبه نشریهعلمی - پژوهشی
نوع نشریهالکترونیکی
کشور محل چاپایران
نمایه نشریهISC

چکیده مقاله

پیش‌بینی پیوند یکی از موضوع‌های مهم در تجزیه و تحلیل شبکه‌های پیچیده است. پیش‌بینی پیوند می‌تواند توسط یک رده‌بند انجام شود؛ به‌طوری‌که بردار ویژگی یک جفت گره، ورودی آن باشد. خروجی رده‌بند نشان می‌دهد که آیا میان آن جفت گره پیوندی پیش‌بینی می‌شود یا خیر (رده یک یا رده صفر). برای استخراج بردار ویژگی یک جفت گره می‌توان از شبکه‌های عصبی گرافی (GNN) استفاده نمود که در اینصورت روش حل مسئله پیش‌بینی پیوند مبتنی بر شبکه عصبی گرافی خواهد بود. در این مقاله، یک روش حل مسئله پیش‌بینی پیوند مبتنی بر شبکه عصبی گرافی به نام ‌GAE (Graph Auto Encoder) ‌به‌عنوان روش‌ پایه در نظر گرفته شده است. یکی از مشکل‌های اساسی در این روش‌ آن است که بردار ویژگی استخراج شده توسط شبکه عصبی گرافی به ازای جفت گره‌های متفاوت، می‌تواند یکسان باشد. برای رفع این مشکل، در این مقاله با استفاده از مفهوم زیرگراف روش پایه بهبود داده شده و چارچوب جدیدی با نام‌ SGAE (Sub-Graph Auto Encoder) پیشنهاد شده است. چارچوب‌ پیشنهادی بر اساس معیارهای مختلف ارزیابی و با روش‌ پایه‌ مقایسه شده‌است که نتایج نشان‌دهنده‌ی بهبود عملکرد آن‌ است. ‌به‌طور مثال روش SGAE ‌به‌طور متوسط نسبت به روش پایه GAE در معیارهای دقت، F1-Score، متوسط صحت و مساحت زیر نمودار صحت-فراخوانی، بهبود 5.5، 5، 5.75 و 5.87 را ایجاد کرده است.