Noncoercive and Noncontinuous Minimax Problems

نویسندگانزینب سلطانی رنانی
همایشthe 4th International Conference on Computational Algebra, Computational Number Theory and Applications
تاریخ برگزاری همایش2023-07-04 - 2023-07-06
محل برگزاری همایش1 - کاشان
ارائه به نام دانشگاهدانشگاه کاشان
نوع ارائهسخنرانی
سطح همایشبین المللی

چکیده مقاله

Techniques and principles of Minimax theory play a key role in many areas of research, including game theory, optimization. Arguably the most important result in zero-sum games, the Minimax Theorem was stated by John von Neumann in 1928 which was considered the starting point of game theory. Formally, von Neumann’s minimax theorem states: Let X ⊂ Rn and Y ⊂ Rm be compact convex sets. If f : X × Y → R is a continuous function that is concave-convex, i.e. (1) f (·, y) : X → R is concave for fixed y , and (2) f (x, ·) : Y → R is convex for fixed x. Then max x∈X min y∈Y f (x, y) = min y∈Y max x∈X f (x, y). In this paper, By using asymptotic function, as the main result, we prove Minimax Theorem under weaker assumptions of continuity and convexity, when the feasible set is an unbounded

کلیدواژه‌ها: Minimax Theorem, Asymptotic function