نویسندگان | زینب سلطانی رنانی |
---|---|
همایش | the 4th International Conference on Computational Algebra, Computational Number Theory and Applications |
تاریخ برگزاری همایش | 2023-07-04 - 2023-07-06 |
محل برگزاری همایش | 1 - کاشان |
ارائه به نام دانشگاه | دانشگاه کاشان |
نوع ارائه | سخنرانی |
سطح همایش | بین المللی |
چکیده مقاله
Techniques and principles of Minimax theory play a key role in many areas of research, including game theory, optimization. Arguably the most important result in zero-sum games, the Minimax Theorem was stated by John von Neumann in 1928 which was considered the starting point of game theory. Formally, von Neumann’s minimax theorem states: Let X ⊂ Rn and Y ⊂ Rm be compact convex sets. If f : X × Y → R is a continuous function that is concave-convex, i.e. (1) f (·, y) : X → R is concave for fixed y , and (2) f (x, ·) : Y → R is convex for fixed x. Then max x∈X min y∈Y f (x, y) = min y∈Y max x∈X f (x, y). In this paper, By using asymptotic function, as the main result, we prove Minimax Theorem under weaker assumptions of continuity and convexity, when the feasible set is an unbounded
کلید واژه ها: Minimax Theorem, Asymptotic function