رزومه وب سایت شخصی
QR


سیدمرتضی بابامیر

سیدمرتضی بابامیر

استاد

دانشکده: دانشکده مهندسی برق و کامپیوتر

گروه: مهندسی نرم افزار

مقطع تحصیلی: دکترای تخصصی

رزومه وب سایت شخصی
QR
سیدمرتضی بابامیر

استاد سیدمرتضی بابامیر

دانشکده: دانشکده مهندسی برق و کامپیوتر - گروه: مهندسی نرم افزار مقطع تحصیلی: دکترای تخصصی |

Please see the following link
http://se.kashanu.ac.ir/babamir

My affiliation

مرتبه علمی: استاد

دکتری تخصصی مهندسی نرم افزار: دانشگاه تربیت مدرس

کارشناسی ارشد مهندسی نرم افزار: دانشگاه تربیت مدرس

کارشناسی مهندسی نرم افزار: دانشگاه فردوسی مشهد

مدیر گروه مهندسی کامپیوتر: از بهمن 99 تا کنون

نمایش بیشتر

Estimating Bifurcating Consensus Phylogenetic Trees Using Evolutionary Imperialist Competitive Algorithm

نویسندگانوجیهه نیکخواه,سید مرتضی بابامیر,سید شهریار عرب
نشریهCURR BIOINFORM
شماره صفحات1
شماره مجلد14
ضریب تاثیر (IF)1.189
نوع مقالهFull Paper
تاریخ انتشار2019-08-30
رتبه نشریهعلمی - پژوهشی
نوع نشریهالکترونیکی
کشور محل چاپایران
نمایه نشریهSCOPUS ,JCR

چکیده مقاله

Abstract: Background: One of the important goals of phylogenetic studies is the estimation of species-level phylogeny. A phylogenetic tree is an evolutionary classification of different species of creatures. There are several methods to generate such trees, where each method may produce a number of different trees for the species. By choosing the same proteins of all species, it is possible that the topology and arrangement of trees would be different. Objective: There are methods by which biologists summarize different phylogenetic trees to a tree, called consensus tree. A consensus method deals with the combination of gene trees to estimate a species tree. As the phylogenetic trees grow and their number is increased, estimating a consensus tree based on the species-level phylogenetic trees becomes a challenge. Method: The current study aims at using the Imperialist Competitive Algorithm (ICA) to estimate bifurcating consensus trees. Evolutionary algorithms like ICA are suitable to resolve problems with the large space of candidate solutions. Results: The obtained consensus tree has more similarity to the native phylogenetic tree than related studies. Conclusion: The proposed method enjoys mechanisms and policies that enable us more than other evolutionary algorithms in tuning the proposed algorithm. Thanks to these policies and the mechanisms, the algorithm enjoyed efficiently in obtaining the optimum consensus tree. The algorithm increased the possibility of selecting an optimum solution by imposing some changes in its parameters.