on graphs with exactly three Q-main eigenvalues

نویسندگانمهرنوش جاورسینه-غلامحسین فتح تبار فیروزجائی
نشریهFILOMAT
تاریخ انتشار۰-۰-۰۱
نوع نشریهچاپی
نمایه نشریهISI

چکیده مقاله

Abstract. For a simple graph G, the Q-eigenvalues are the eigenvalues of the signless Laplacian matrix Q of G. A Q-eigenvalue is said to be a Q-main eigenvalue if it admits a corresponding eigenvector non orthogonal to the all-one vector, or alternatively if the sum of its component entries is non-zero. In the literature the trees, unicyclic, bicyclic and tricyclic graphs with exactly two Q-main eigenvalues have been recently identified. In this paperwe continue these investigations by identifying the treeswith exactly three Q-main eigenvalues, where one of them is zero.