نویسندگان | حسین طالبی قادیکلائی,محمد مهدی برزگری,شهاب الدین صدیقی |
---|---|
نشریه | International Journal of Hydrogen Energy |
شماره صفحات | 4469 |
شماره مجلد | 48 |
ضریب تاثیر (IF) | ثبت نشده |
نوع مقاله | Full Paper |
تاریخ انتشار | 2023-01-17 |
رتبه نشریه | علمی - پژوهشی |
نوع نشریه | الکترونیکی |
کشور محل چاپ | ایران |
نمایه نشریه | SCOPUS ,JCR |
چکیده مقاله
The present study is conducted on forming of the metallic bipolar plates made of 316 stainless steel sheet with a parallel serpentine flow field. The plastic deformation of straight and curved microchannels, forming limit criteria, and deformation mechanics during the process are investigated partially to present a reliable model for estimating fracture initiation. For this purpose, experimental stamping tests are employed to fabricate metallic bipolar plates and the process is simulated by finite element software. The validity of simulation results is examined by comparing thickness distribution and force-displacement curves reflecting 4.76% and 3.85% error rates, respectively. According to experimental observations, fracture starts at a channel depth of 0.610 mm. Hence, for determining the forming limit and predicting the fracture during the process, the deformation mechanic is studied at different points of the microchannels. Results of stress states analysis indicate that the stress state of plane-strain tension up to biaxial tension governs this process. Despite the presence of different loading paths during the process, the critical element in each channel is deformed under plane-strain tension. Therefore, a fracture model is developed based on thinning percentage and equivalent strain to predict the instability of metallic bipolar plates. According to the results, both the equivalent strain and thinning percentage criteria with critical limits of 0.56 and 33.45%, respectively, are considered as an allowable range of plastic deformation during the conventional stamping process of bipolar plates. Results indicate that maximum thinning in all directions is lower than 33.45% by using the modified stamping process.
tags: Polymer electrolyte membrane fuel cell Metallic bipolar plates Metal forming process Stamping