| نویسندگان | رضا جهانی نزاد,مریم مسعودی آرانی |
| همایش | چهل و هشتمین کنفرانس ریاضی ایران |
| تاریخ برگزاری همایش | 2017-8-22 |
| محل برگزاری همایش | همدان |
| نوع ارائه | سخنرانی |
| سطح همایش | بین المللی |
چکیده مقاله
Let I and J be ideals of a commutative ring R. we call I a z-ideal, if Ma I; for all a 2 I, where Ma
is the intersection of all maximal ideals containing a. The aim of this paper is generalize the notion of
z-ideals and zJ -ideals to noncommutative rings. If I be a z-ideal in a right duo ring and P 2 Min(I), we
will present a condition which P is a z-ideal. Also we will prove that if I is a left zJ -ideal of a P- right
duo ring and P 2 Min(I), then P is a left zJ -ideal. Finally, we show that whenever P and Q are prime
ideals of a P- right duo ring R which are not comparable and P Q is a left zJ -ideal of R, then both P
and Q are left zJ -ideals.