نویسندگان | مریم مسعودی آرانی,رضا جهانی نژاد |
---|---|
نشریه | Hacettepe Journal of Mathematics and Statistics |
شماره صفحات | 1423 |
شماره مجلد | 49 |
ضریب تاثیر (IF) | 0.867 |
نوع مقاله | Full Paper |
تاریخ انتشار | 2020-07-01 |
رتبه نشریه | علمی - پژوهشی |
نوع نشریه | الکترونیکی |
کشور محل چاپ | ایران |
نمایه نشریه | SCOPUS ,JCR |
چکیده مقاله
The aim of this paper is to generalize the notion of z-ideals to arbitrary noncommutative rings. A left (right) ideal I of a ring R is called a left (right) z-ideal if Ma ⊆ I, for each a ∈ I, where Ma is the intersection of all maximal ideals containing a. For every two left ideals I and J of a ring R, we call I a left zJ -ideal if Ma ∩ J ⊆ I, for every a ∈ I, whenever J * I and I is a zJ -ideal, we say that I is a left relative z-ideal. We characterize the structure of them in right duo rings. It is proved that a duo ring R is von Neumann regular ring if and only if every ideal of R is a z-ideal. Also, every one sided ideal of a semisimple right duo ring is a z-ideal. We have shown that if I is a left zJ -ideal of a p-right duo ring, then every minimal prime ideal of I is a left zJ -ideal. Moreover, if every proper id
tags: z-ideal, duo ring, relative z-ideal, semisimple ring, von Neumann regular ring