رزومه
QR


محمود اکبری

محمود اکبری

دانشیار

دانشکده: دانشکده مهـندسـی

گروه: مهندسی عمران

مقطع تحصیلی: دکتری

رزومه
QR
محمود اکبری

دانشیار محمود اکبری

دانشکده: دانشکده مهـندسـی - گروه: مهندسی عمران مقطع تحصیلی: دکتری |

برنامه هفتگی دکتر محمود اکبری

نیمسال دوم سال تحصیلی 1404-1403

Tel: 031-55912452, Office: 307G

Email: makbari@kashanu.ac.ir

Websitehttps://faculty.kashanu.ac.ir/makbari/fa

     ساعت

روز

8-10

10-12

12-14

14-16

16-18

18-20

شنبه

اجرایی

اجرایی اجرایی اجرایی هیدروانفورماتیک مراجعه دانشجویی

یکشنبه

اجرایی اجرایی اجرایی

هیأت رئیسه

هیأت رئیسه هیدروانفورماتیک

دوشنبه

اجرایی اجرایی اجرایی

شورای دانشگاه، جلسه گروه 

مهندسی آب و فاضلاب و پروژه

مراجعه دانشجویی

سه شنبه

اجرایی اجرایی اجرایی

اجرایی

مهندسی آب و فاضلاب و پروژه

راهنمایی و مشاوره دانشجویان ویژه ورودی های 1402

چهارشنبه

اجرایی اجرایی اجرایی

اجرایی

اجرایی اجرایی

توضیحات

1-در غیر از ساعات اعلام شده در صورت حضور در خدمت مراجعین محترم خواهم بود.

2- جهت هماهنگی بیشتر قبل از مراجعه از طریق ایمیل با بنده مکاتبه شود.

3-برای آگاهی از نمرات میانترم، پایانترم و هرگونه اطلاعات دیگری در مورد دروس به وب سایت بنده مراجعه شود.

نمایش بیشتر

Prediction of Compressive Strength of Concrete by Data-Driven Models

نویسندگانفائزه سادات خادمی-محمود اکبری-سید محمد مهدی جمال
تاریخ انتشار2015-3-01

چکیده مقاله

The aim of this study is prediction of 28-day compressive strength of concrete by data-driven models. Hence, by considering concrete constituents as input variables, two data-driven models namely Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models are constructed for the purpose of predicting the 28-days compressive strength of different concrete mix designs. Comparing the two models illustrates that MLR model is not a suitable model of predicting the compressive strength; however, ANN can be used to efficiently predict the compressive strength of concrete.