| نویسندگان | M. Mazrooei - L. Rahimi - N. Sahami |
|---|---|
| نشریه | Turkish Journal of Mathematics |
| ارائه به نام دانشگاه | University of Kashan |
| شماره مجلد | 42 |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2018-01-22 |
| رتبه نشریه | ISI |
| نوع نشریه | چاپی |
| کشور محل چاپ | ترکیه |
چکیده مقاله
Using the concept of the partial Hasse derivative, we introduce a generalization of the classical 2-dimensional discrete Fourier transform, which will be called 2D-GDFT. Begining with the basic properties of 2D-GDFT, we proceed to study its computational aspects as well as the inverse transform, which necessitate the development of a faster way to calculate the 2D-GDFT. As an application, we will employ 2D-GDFT to construct a new family of quasi-cyclic linear codes that can be assumed to be a generalization of Reed{Solomon codes.
متن کامل مقاله
لینک دانلود فایل