| نویسندگان | Vahid Pirhadi, G. fasihi, S. Azami |
|---|---|
| نشریه | Journal of Mathematics |
| شماره صفحات | 1 |
| شماره مجلد | 2025 |
| ضریب تاثیر (IF) | 1.3 |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2025-07-05 |
| رتبه نشریه | ISI (WOS) |
| نوع نشریه | الکترونیکی |
| کشور محل چاپ | ایالات متحدهٔ امریکا |
| نمایه نشریه | JCR ,SCOPUS |
چکیده مقاله
This paper is devoted to Ricci solitons admitting a Jacobi-type vector field. First, we present some rigidity results for Ricci solitons $(M^n, g, V, \lambda)$ admitting a Jacobi-type vector field $\xi$ and provide conditions under which $\xi$ is Killing. We also present conditions under which the Ricci soliton $(M^n, g, \xi, \lambda)$ is isometric to $\mathbb{R}^n$. Next, we demonstrate that Jacobi-type vector fields which are the potential vector fields of a quasi-Einstein manifold are Killing and of constant length. Finally, we prove that quasi-Einstein manifolds whose potential vector fields are Jacobi-type, are necessarily of constant scalar curvature.