| نویسندگان | علی ازاد,علی اکبر عباسیان آرانی,علی عارف منش,رحیم شمس الدینی |
| نشریه | International Journal of Thermofluids |
| شماره صفحات | 1 |
| شماره مجلد | 25 |
| ضریب تاثیر (IF) | ثبت نشده |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2024-11-29 |
| رتبه نشریه | علمی - پژوهشی |
| نوع نشریه | الکترونیکی |
| کشور محل چاپ | ایران |
| نمایه نشریه | JCR |
چکیده مقاله
The present study aims to examine the utilization of nanofluids in various channel designs, considering their
significant role in heat exchangers. Three schematics are introduced for placing blocks within the channel,
aiming to enhance the heat transfer rate and flow temperature variation. Additionally, a parametric study is
conducted to analyze the impact of flow parameters and geometrical variables on the objectives. To accurately
assess the effectiveness of nanoparticles on heat transfer between the flow and channel walls, smoothed particle
hydrodynamics (SPH) is employed to model the fluid flow (water) and nanoparticles (CuO) ranging from 0 to 5 %
within the flow. The findings of this study reveal that an increase in Reynolds number from 50 to 70 or nanofluid
volume fraction from 0 to 5 % leads to a higher average Nusselt number(to 37 %). Furthermore, positioning the
blocks in the middle of the channel induces more turbulence in the flow, resulting in increased contact with
higher-temperature walls and subsequently higher local Nusselt numbers(to 48.8 %). In addition, employing
proposed design increase the outlet temperature about 20.5 %.