نویسندگان | مرجان حکیمی نژاد -سید علیرضا اشرفی قمرودی |
---|---|
تاریخ انتشار | ۲۰۱۳-۱۰-۰۱ |
چکیده مقاله
Suppose G1 and G2 are n- vertex graphs with Laplacian and normalized Laplacian eigenvalues μ i(Gj) and δ(Gj) , j = 1, 2 and 1 ≤ i ≤ n , respectively. We also assume that μ 1(Gj) ≤μ2(Gj) ≤ ... ≤μ n(Gj), δ1(Gj) ≤δ2(Gj) ≤...≤δn(Gj).The Laplacian and normalized spectral distances between G1 and G2 are defined as follows: Lσ(G1,G2) = ∑|μi(G1) -μi(G2)| and lσ(G1,G2) =∑ |δi(G1) - δi(G2)|. In this paper, we compute the Laplacian and normalized Laplacian spectral distances of some particular classes of graphs. In some cases, upper and lower bounds for this quantity are supplied.