نویسندگان | M. Tavakoli, F. Rahbarnia, M. Mirzavaziri and A. R. Ashrafi |
---|---|
نشریه | Transactions on Combinatorics |
شماره صفحات | 55-58 |
شماره سریال | 4 |
شماره مجلد | 3 |
نوع مقاله | Full Paper |
تاریخ انتشار | 2014 |
رتبه نشریه | علمی - پژوهشی |
نوع نشریه | چاپی |
کشور محل چاپ | ایران |
نمایه نشریه | ISC, ISI, Scopus |
چکیده مقاله
Let dn,m =2n+1− √ 17+8(m−n) 2 and En,m be the graph obtained from a path Pdn,m+1 = v0v1 · · · vdn,m by joining each vertex of Kn−dn,m−1 to vdn,m and vdn,m−1, and by joining m − n + 1 − n−dn,m 2 vertices of Kn−dn,m−1 to vdn,m−2 . Zhang, Liu and Zhou [On the maximal eccentric connectivity indices of graphs, Appl. Math. J. Chinese Univ., in press] conjectured that if dn,m > 3, then En,m is the graph with maximal eccentric connectivity index among all connected graph with n vertices and m edges. In this note, we prove this conjecture. Moreover, we present the graph with maximal eccentric connectivity index among the connected graphs with n vertices. Finally, the minimum of this graph invariant in the classes of tricyclic and tetracyclic graphs are computed.